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A three-dimensional rest-to-rest attitude maneuver of ¯exible spacecraft
equipped with on±o� reaction jets is studied. Equations of motion of the
spacecraft are developed by using Lagrangian formulation. The ®nite element
method is used to discretize elastic deformations of a particular model of
satellite with ¯exible solar panels by modelling the panels as ¯at plate
structures in bending. Under unshaped inputs, the maneuvers induce an
undesirable motion of the satellite as well as vibration of the solar panels.
Time-optimal and fuel-e�cient input shapers are then applied to reduce the
residual oscillation of its motion at several natural frequencies in order to get
an expected pointing precision of the satellite. Once the shaped inputs are given
to the satellite, the performance improves signi®cantly. Results indicate that,
the fuel-e�cient shaped inputs give smaller maximum de¯ections of ¯exible
members compared with the time-optimal ones.

# 1999 Academic Press

1. INTRODUCTION

A spacecraft designed to have a certain orientation relative to the earth, for
example, needs a reorientation of its attitude after reaching a geostationary orbit
or frequent attitude corrections during its operation. Attitude maneuver of rigid
spacecraft can be done without a lot of vibration problems after reaching its
desired attitude. For a ¯exible spacecraft maneuvering the attitude without
regard to system ¯exibility or without controls on the ¯exible members, large
amplitude transient and steady-state oscillations may occur, especially when the
system is equipped with on±off jets. Such a system often needs an attitude
maneuver with limited vibration both during and after the maneuver. For
example, it may be necessary to generate a torque pro®le such that the ¯exible
spacecraft is rotated through a desired attitude angle with its residual oscillation
in a permissible value, while the de¯ections of ¯exible members remain small
throughout the maneuver and go to zero at the end of the maneuver.
The technique of input shaping to minimize modal vibration in slew

maneuvers of a ¯exible spacecraft system has received much attention in the
recent few years. Input shaping is implemented by convolving a sequence of
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impulses, an input shaper, with a desired system command to produce a shaped
input that is then used to drive the system [1]. The amplitudes and time locations
of the impulses are determined by solving a set of constraint equations
formulated to control the dynamic performance of the system.
Flexible spacecraft equipped with on±off reaction jets cannot produce the

variable-ampliftude actuation force that is usually required with input shaping.
The spacecraft is controlled with constant-amplitude force pulses. Rogers and
Seering [2] developed the method for extending input shaping to the case of on±
off actuators. Constraints on the impulse amplitudes have been used to generate
time-optimal command pro®les for on±off reaction jets. A lot of studies [3±5]
have demonstrated on±off input shaping with mass, spring, and damper
simulations. These studies have concentrated on eliminating residual vibration.
No constraints were placed on the amplitude of de¯ection during the slew. Pao
and Singhose [6] have shown that input shaping is very successful in eliminating
residual vibration and has the bene®t of decreasing transient de¯ection when
compared to bang-bang control. However, the amplitude of the transient
de¯ection is not limited and can still be very large. Singhose et al. [7] studied
input shaping to observe slew maneuvers of ¯exible spacecraft with the
limitation on member de¯ection. They modelled the spacecraft as a spring±mass
system, both for rotary and linear systems. For such simple models with one
¯exible mode and a rigid-body mode, expressions for the de¯ection of the
systems can be derived easily. But for systems with a lot of ¯exible modes, the
derivation of their expressions becomes very troublesome.
A spacecraft or a satellite in operation needs certain accuracies in its attitude.

The KOREASAT requires a satellite with an antenna beam pointing error not
greater than 0�07� in roll and pitch, and not more than 0�2� in yaw [8]. Owing to
such criteria, the ¯exible satellite maneuvered by shaped inputs must have
residual attitude oscillation that does not surpass the permissible maximum
error. However, for a system having a lot of ¯exible modes, such as the ®nite
element model of a satellite with ¯exible solar panels studied by Koguchi and
Parman [9±11], when the satellite is subjected to a shaped input suppressing
residual vibration at the frequency with the highest vibration amplitude, other
frequencies can amplify the resulting residual vibration so that the satellite
attitude oscillation after maneuver is still greater than the permissible attitude
error. In this case, shaped inputs suppressing residual vibration at several
frequencies are needed.
This paper presents computer simulations of rest-to-rest attitude maneuvers of

a satellite with ¯exible solar panels under shaped inputs. The equation of motion
is derived by using a hybrid system of co-ordinates and a Lagrange's
formulation, and the ®nite element method is used to discretize elastic
deformations of solar panels by modelling them as ¯at plate structures in
bending, such as the model proposed by Koguchi and Parman [9±11]. The time-
optimal and fuel-ef®cient shaped inputs are selected to make zero vibration at
the frequency with the greatest amplitude of residual attitude oscillation and
small vibration at several other frequencies in order to control the attitude
maneuvers of the satellite. This is so that its residual attitude oscillation is a
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permissible value at the end of maneuvers, while the de¯ections of solar panels
during the maneuvers are still small.

2. MATHEMATICAL FORMULATION OF FLEXIBLE SPACECRAFT
DYNAMICS

The particular spacecraft being studied in this paper is a satellite containing a
rigid main body and two symmetrical ¯exible solar panels, as shown in Figure 1.
To identify the satellite attitude relative to an inertial frame Fi (OiXiYiZi ), a main
body ®xed frame Fb(ObXbYbZb) is de®ned. To discretize elastic deformations of
the panels, the ®nite element method (FEM) is used. For this application, each
solar panel is divided into 16 rectangular bending plate elements. The elements
on the right side are numbered from 1 to 16 and on the left side from 17 to 32,
while their nodal points are numbered from 1 to 27 and from 28 to 54.
Displacements of their nodes are measured in substructure reference frames
Fj(OjXjYjZj ) ( j=1, 2, . . . , 32). The Yj -axes ( j=1, 2, . . . , 16) of the right side
panel are parallel to the Yb-axis, while the Yj -axes ( j=17, 18, . . . , 32) of the
left side are anti-parallel. All Zj -axes are normal to their panels. The origin of
the main body ®xed frame Ob is placed on the mid-point of the longitudinal axis
of the solar panels. The solar panels are oriented towards the sun, and the
declination with respect to the Xb-axis is identi®ed by the offset angle d.

2.1. GENERAL EQUATIONS OF MOTION OF FLEXIBLE SPACECRAFT

In this section, the mathematical model of general gravity oriented and non-
spinning ¯exible spacecraft dynamics will be derived by using a Lagrangian
formulation, so that the expressions of kinetic energy and potential energy for
the whole spacecraft need to be determined ®rst. Since the spacecraft considered
consists of the rigid main body and several ¯exible substructures, the kinetic
energy and potential energy of the spacecraft can be determined by observing the
rigid body and ¯exible structural subsystems separately, and then summing their
resulted kinetic and potential energies.

52

53

54 51

5032

31

49 31 28 3

2

6

2

1

1

4

3

22 25

1513

14 23
16

26

24 27

5

4

33 30
Z20Z31

Y31

Y20

X31

X20

Zb

Yb

Z4

X4

Y4

X15

Z15

Y15

Xb

29 19 17
32 29

30 20 18

Figure 1. The model of the satellite being investigated; element numbering, nodal point num-
bering, rigid main body ®xed reference frame, and local reference frames.
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2.1.1. Kinetic energy

The kinetic energy of the rigid main body of the spacecraft can be written in
the following form:

Ekb � 1
2

_rTi,b _ri,bmb � 1
2ooo

T
b,iIbooob,i � _rTi,bQbooob,i, �1�

where ri,b is a vector from Oi to Ob with the overdot indicating its differentiation
with respect to time relative to Fi , ooob,i is the angular velocity vector of Fb relative
to Fi , mb is the total mass of the main body, Ib is the inertia matrix of the body
relative to Ob , and Qb is the coupling matrix between translational and
rotational displacements of the main body. If Ob coincides with the centre of
mass of the main body, the value of Qb equals zero.
The kinetic energy of ¯exible substructures, by following the ®nite element

method [12], can be written in the following form:

Eka � 1
2

_rTi,b _ri,bma � 1
2

_d
T
M _d� 1

2ooo
T
b,iIaooob,i � oooT

b,iA
_d� _rTi,bW

_d� _rTi,bQaooob,i, �2�
where d is the displacement vector of ¯exible substructures, ma is the mass
of substructures, M �PN

j�1 P
T
j MjPj is its mass matrix, and Ia �

PN
j�1 T

T
j IjTj

is its inertia matrix with respect to Ob. The coupling matrices
A �PN

j�1 T
T
j AjPj and W �PN

j�1 T
T
j WjPj relate the main body rotational and

translational displacements respectively to the substructure displacements, while
Qa �

PN
j�1 T

T
j QjTj is the coupling matrix between the translational and

rotational displacements of the main body contributed by the undeformed-state
substructures. In these matrices, N is the number of elements of ¯exible
substructures. For the jth element, Tj is the transformation matrix from Fb

to Fj , Pj is the assembling matrix relating the element displacement vector dj
and the displacement vector of ¯exible substructures d in the form of
dj � Pjd, Mj �

�
mj
CT

j Cj dm is the mass matrix, Aj � j ~rb,oWj �
�
mj

j ~ro,p0Cj dm and
Wj �

�
mj
Cj dm are the coupling matrices between rotational and translational

displacements of the main body respectively and the element displacements,
Qj �

�
mj
�j~rb,o � j ~ro,p0�T dm is the coupling matrix for the translational and

rotational displacements of the main body contributed by the undeformed-state
element, and Ij �

�
mj
�j~rb,o � j~ro,p0�T�j~rb,o � j~ro,p0� dm is the element inertia matrix

with respect to Ob. Cj is the element shape function matrix, jrb, o and jro,p0 are
vectors from Ob to Oj and from Oj to a particle p with mass dm of the element in
the undeformed state respectively expressed in Fj , while a general notation of ~r
means the skew symmetric matrix of a vector r.

2.1.2. Potential energy

The potential energy of the satellite consists of the potential energy of its
undeformed state and the potential energy due to elastic deformations of ¯exible
substructures. The potential energy of the undeformed state, in this research, is
measured relative to the earth. When the satellite orbit is circular, it can be
expressed as

Epr � Epr�ri,b�: �3�
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The potential energy due to elastic deformations is the sum of the strain energy
of ¯exible substructures and the potential energy due to external forces acting on
the substructures with a minus sign. By following the general ®nite element
method procedures, the potential energy due to the elastic deformations of
¯exible substructures can be written in the following form:

Epa � 1
2 d

TKdÿ dTFa, �4�
where K=

PN
j�1 P

T
j KjPj is the stiffness matrix of the substructures and

Fa=
PN

j�1 P
T
j fj is the discrete external forces vector acting on the substructures.

For the jth element, fj �
�
Vj
CT

j Ff dV is the discrete external forces vector acting
on the nodes and Kj �

�
Vj
CT

j B
T
j RjBjCj dV is the stiffness matrix. Ff is a

distributed external forces vector working on the element, Bj is an operator
matrix containing ®rst or second order derivative operators, and Rj is an
elasticity matrix of element j.

2.1.3. Equations of motion

To derive the general equations of motion of ¯exible spacecraft by using the
Lagrangian procedure, the Lagrangian operator and Lagrange's equation of
motion are used. Then, it is assumed that control (external) forces acting on the
rigid main body of the spacecraft are much larger than the forces resulting from
the potential energy of the undeformed state. By using equations (1)±(4), the
equations of motion of the spacecraft can then be written in the linearized form
as follows:

mU3 Q W
QT I A
WT AT M

24 35 �r
�YYY
�d

8<:
9=;� 0 Q~ooo0 0

0 I~ooo0 0
0 AT~ooo0 D

24 35 _r
_YYY
_d

8<:
9=;

�
0 0 0
0 0 0
0 0 K

24 35 r
YYY
d

8<:
9=; � Fb

Tb

Fa

8<:
9=;, �5�

where Fb and Tb are external forces and torques vectors acting on the main
body, D is the damping matrix of the substructures, ooo0 and YYY are orbital
velocity and attitude angles vector of the satellite, respectively. In this paper, the
attitude angles are expressed in Bryant angles (roll f, pitch y, and yaw c). Also,
the ¯exible structural subsystems are assumed to have no dissipation properties,
or D= 0.

2.2. PARTICULAR DYNAMICAL MODEL OF THE SATELLITE WITH SOLAR PANELS

BEING MODELLED AS RECTANGULAR PLATE ELEMENTS.

The mathematical expression of general spacecraft dynamics has been formed
in equation (5). In this section, a particular model of ¯exible spacecraftÐa
satellite consisting of a rigid main body carrying two symmetrical ¯exible solar
panelsÐwill be developed. However, equation (5) needs to be evaluated for a
certain type of ¯exible substructures. In this study, the attitude of the
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hypothetical satellite being chosen is as follows: the Zb-axis of the rigid main

body reference frame should point to the centre of the earth, the Yb-axis is

normal to the orbital plane, and the Xb-axis should point to the velocity when

there are no attitude errors.

For the application of the ®nite element method to discretize elastic

deformations of solar panels, the following idealizations are used: (1) the solar

panels are divided into rectangular ¯at plate bending elements, (2) each element

has a uniform mass density, (3) only out-of-plane deformations of solar panels

are considered, (4) external loads (both forces and torques) on the solar panels

are assumed to work on the nodal points of the elements, and (5) the Yj -axes of

elements and the Yb-axis of the main body frame are parallel or antiparallel. The

Xj -axes and Yj -axes of elements are in the panel plane, and their Zj -axes are

normal to the plane. By using the above idealizations, each element of the solar

panel has 12 degrees of freedom in total, as shown in Figure 2.

In this research, the material of the solar panels is assumed to be isotropic

material. For an isotropic plate, Rj can be written as

Rj � Et3

12�1ÿ �2�

1 � 0
� 1 0

0 0
1ÿ �
2

264
375, �6�

where E, t, and � are the element Young's modulus, thickness, and Poisson's

ratio, respectively. The shape function matrix introduced by Bogner et al. [13] is

selected. This shape function matrix can guarantee that de¯ections and slopes

are continuous at all edges of the element. Its expression for the jth element is as

follows:
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Figure 2. A rectangular plate bending element model of the solar panel.
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CT
j �

�1� 2x��1ÿ x�2�1� 2Z��1ÿ Z�2
�1� 2x��1ÿ x�2Z�1ÿ Z�2b
ÿx�1ÿ x�2�1� 2Z��1ÿ Z�2a
�1� 2x��1ÿ x�2�3ÿ 2Z�Z2
ÿ�1� 2x��1ÿ x�2�1ÿ Z�Z2b
ÿx�1ÿ x�2�3ÿ 2Z�Z2a
�3ÿ 2x�x2�3ÿ 2Z�Z2
ÿ�3ÿ 2x�x2�1ÿ Z�Z2b
�1ÿ x�x2�3ÿ 2Z�Z2a

�3ÿ 2x�x2�1� 2Z��1ÿ Z�2
�3ÿ 2x�x2Z�1ÿ Z�2b

�1ÿ x�x2�1� 2Z��1ÿ Z�2a

2666666666666666666664

3777777777777777777775

, �7�

where a and b are the element length and width, respectively, x=x/a, and Z=
y/b. For this shape function matrix, the coupling matrix Aj can be obtained
as follows:

AT
j �

rtab
24

6y0j � 9
5 b

ÿ6x0j ÿ 9
5 a 0

by0j � 2
5 b

2 ÿbx0j ÿ 3
10 ab 0

ÿay0j ÿ 3
10 ab

ax0j � 2
5 a

2 0

6y0j � 21
5 b

ÿ6x0j ÿ 9
5 a 0

ÿby0j ÿ 3
5 b

2 bx0j � 3
10 ab 0

ÿay0j ÿ 7
10 ab

ax0j � 2
5 a

2 0

6y0j � 21
5 b

ÿ6x0j ÿ 21
5 a 0

ÿby0j ÿ 3
5 b

2 bx0j � 7
10 ab 0

ay0j � 7
10 ab

ÿax0j ÿ 3
5 a

2 0

6y0j � 9
5 b

ÿ6x0j ÿ 21
5 a 0

by0j � 2
5 b

2 ÿbx0j ÿ 7
10 ab 0

ay0j � 3
10 ab

ÿax0j ÿ 3
5 a

2 0

26666666666666666666666664

37777777777777777777777775

, �8�

where x0j and y0j are components of the vector from Ob to Oj in the Xj -axis and
Yj -axis directions respectively. The inertia matrix Ij can be written as follows:

Ij � rabt
Ij, 11 Ij, 21 Ij, 31
Ij, 21 Ij, 22 Ij, 32
Ij, 31 Ij, 32 Ij, 33

24 35, �9�

where
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Ij, 11 � y20j � 1
12 t

2 � 1
3 b

2 � y0jb, �10a�
Ij, 21 � ÿ 1

2 �12 ab� y0ja� x0jb� ÿ x0jy0j, �10b�
Ij, 31 � Ij, 32 � 0, �10c�
Ij, 22 � x20j � 1

12 t
2 � 1

3 a
2 � x0ja, �10d�

Ij, 33 � x20j � y20j � 1
3 �a2 � b2� � x0ja� y0jb, �10e�

and the coupling matrix for rotational displacements of the main body and the
displacements of element j can be written as follows:

Wj � rtab
24
�

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
6 b ÿa 6 ÿb ÿa 6 ÿb a 6 b a

24 35: �11�

3. REST-TO-REST THREE-DIMENSIONAL ATTITUDE MANEUVER OF
FLEXIBLE SATELLITE UNDER BANG-BANG TORQUE INPUTS

In this study, the observed satellite is supposed to have no control and no
damping properties on the ¯exible solar panels. The control inputs are only
applied to the rigid main body, at the center of the mass of the satellite, as on±
off reaction jets with constant amplitude force or torque pulses. For such a
system, under control or external torques only, considering equation (5), the
resulted attitude angle acceleration of the satellite as a rigid body motion can be
written as

�f
�y
�c

8<:
9=; � Ix Ixy Ixz

Ixy Iy Iyz
Ixz Iyz Iz

24 35ÿ1 Tbx

Tby

Tbz

8<:
9=;, �12�

where Ix , Iy , Iz , Ixy , Ixz , and Iyz are components of the inertia matrix I of the
whole satellite, and Tbx , Ty, and Tbz are components of the torque input vector
Tb on the rigid main body. By integrating equation (12) with respect to time one
gets an expression of desired attitude angle velocity:

_fd
_yd
_cd

8<:
9=; �

� Ix Ixy Ixz
Ixy Iy Iyz
Ixz Iyz Iz

24 35ÿ1 Tbx

Tby

Tbz

8<:
9=; dt, �13�

and integrating once more gives a desired roll angle displacement:

fd

yd
cd

8<:
9=; �

� � Ix Ixy Ixz
Ixy Iy Iyz
Ixz Iyz Iz

24 35ÿ1 Tbx

Tby

Tbz

8<:
9=; dt dt: �14�
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The main body of the satellite is modelled as six lumped masses at certain

positions, shown in Table 1, the parameters of the ¯exible solar panels being

used can be seen in Table 2. The offset angle of solar panels d is taken to be 30�.
For this con®guration, Ob coincides with the centre of the mass of the whole

satellite in the undeformed state, Ix=17535 kg-m2, Iy=2384 kg-m2, Iz=

15557 kg-m2, Ixy= Iyz=0, and Ixz=43 kg-m2. The initial condition of the

observed satellite is an undeformed state and Fb coincides with Fi . The satellite is

orbiting the earth in a constant angular velocity

ooo0 � ÿ7�29 10ÿ5 ji rad=s, �15�
where ji is the unit vector in the Yi-axis direction. This means that Fb performs in

Fi one rotation per sidereal day (24 h of sidereal time or 23 h 56 min 4�09054 s

of mean solar time).

The roll angle of the satellite will be changed to the desired angle 5�, or about
0�0873 rad, while the pitch and yaw angles are still 0�. The constant-amplitude

command for rest-to-rest slew maneuver in the shortest duration time is a bang-

bang input. Constraint equations that must be satis®ed for this rest-to-rest slew

maneuver are f _fd,
_yd, _cdgT � 0 and ffd, yd, cdgT � f0�0873, 0, 0gT: If the

amplitude of command, either Tbx , Tby , or Tbz , applied on the satellite is 20 N-m,

TABLE 1

Lumped masses consisting of the rigid main body

Mass Position (Xb, yb, zb)
(kg) (m)

400 (0�40, 0�00, 0�00)
400 (ÿ0�40, 0�00, 0�00)
500 (0�00, 0�50, 0�00)
500 (0�00, ÿ0�50, 0�00)
550 (0�00, 0�00, 1�40)
550 (0�00, 0�00, ÿ1�40)

TABLE 2

Parameters of the solar panels of the satellite

Description Values

Number of solar panels 2
Dimension of each solar panel (m) 1262�460�03
Young's modulus, E (N/m2) 0�66108

Poisson ratio � 0�3
Mass density, r(kg/m3) 120
Number of elements in each solar panel 16
Dimension of each element, b6a6t (m) 1�561�260�03
Offset angle, d (degrees) 30
Distance between panel's root and Ob (m) 1�80
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the pro®le of bang-bang torques needed consists of 17�494 s of Tbx and 0�868 s

of Tbz bang-bangs. The satellite is subjected ®rstly to the roll torque input only,

and after that, the yaw input is applied. Under these inputs, the roll angle

changes to the desired displacement, the yaw angle is disturbed, while the pitch

angle is not excited. After the inputs are stopped, the roll and yaw angles still

oscilate in very large amplitudes dominantly at the period of 17�49 s (i.e., at the

natural frequency of 0�3593 rad/s). The resultant amplitude of residual roll angle

oscillation is 6�76�, while the resultant amplitude of residual yaw angle

oscililation is 4�47� as shown in Figure 3(a). This means that the residual roll

angle oscillation is about 135% of the desired roll displacement. Of course such

residual oscillation is unfavorable and may disturb the satellite mission. The

solar panels vibrate in very large amplitudes. The largest residual vibrations

occur at their tips. Node 25 experiences an unlikely local vertical vibration,

where the large amplitude of 2�847 m occurs, as shown in Figure 3(b).

Compared with the solar panel's length of 12 m, this amplitude of vibration is

about 24%. For such conditions the use of the local reference frame ®xed at the

undeformed-state element in the ®nite element method is no longer true.

The in¯uence of the bang-bang yaw command applied to residual attitude

angle oscillations of the satellite, in this case, is very small. If the satellite is

subjected to this yaw command only, the total amplitudes of residual roll and

yaw angle oscillations are less then 0�04� and 0�03�, respectively as shown in

Figure 4, while the pitch angle is undisturbed. The pitch angle is still zero.
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Figure 3. Time responses under the bang-bang roll and yaw torque inputs: (a) attitude angle
displacement of the main body; (b) vertical displacement measured in the local reference frame of
node 25 of the solar panel. Ð, Roll; - � - �, pitch, - - - - -, yaw.
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4. INPUT SHAPERS TO REDUCE RESIDUAL VIBRATION IN REST-TO-REST
ATTITUDE MANEUVERS

The ¯exible satellite studied here is equipped with on±off reaction jets, and so
cannot produce a variable-amplitude actuation force. The satellite must be
moved with constant-amplitude force pulses. For this kind of satellite, when the
bang-bang input is used for rest-to-rest slew maneuvers, the resulting residual
vibration of ¯exible members and attitude oscillation of the rigid main body can
be relatively large compared with the desired new attitude. By shaping the input,
the residual vibration can be reduced.
The command inputs applied to the observed satellite consist of positive or

negative constant-amplitude force pulses. For rest-to-rest maneuvers, the
commands must contain both positive and negative pulses so that the satellite
can be accelerated and then decelerated back to zero velocity. Two kinds of
pro®les can be generated by these inputs. The ®rst pro®le is a pro®le that will
slew the satellite in an optimal maneuver time duration, and the second pro®le is
a pro®le that will maneuver the satellite with ef®cient fuel consumption. An
input shaper to generate the command for rest-to-rest slew maneuvers can be
written in the following form:

Ai

ti

� �
� A1 A2 . . . An

t1 t2 . . . tn

� �
, �16�

where i=1, . . . , n, Ai is the amplitude of the ith impulse, ti is the time location
of the ith impulse, and n is an integer. Usually, t1 is selected to be zero.
For the time-optimal command, the value of n in the input shaper can be an

even or odd integer. The values of Ai for this shaper, that produce the positive
or negative constant-amplitude of the command, can be expressed as

A1 � 1
Ai � 2�ÿ1�iÿ1 �i � 2, 3, . . . ; nÿ 1�:
An � 1�ÿ1�nÿ1

8<: �17�

For the fuel-ef®cient command, n in equation (16) must be an even integer, and
the values of Ai can be written as follows [14]:
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Figure 4. Time responses of the rigid main body under the bang-bang yaw torque input only.
Key as for Figure 3.
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Ai � 1 i � 1, 3, . . . ,
n

2
ÿ 1,

n

2
� 2,

n

2
� 4, . . . , n

� �
Ai � ÿ1 i � 2, 4, . . . ,

n

2
,
n

2
� 1,

n

2
� 3, . . . , nÿ 1

� � :
8<: �18�

Equations (17) and (18) lead to the command constraint equations for time-

optimal shapers and fuel-ef®cient shapers, respectively. An example of equation

(18) is demonstrated by Figure 5, where a step convolved with this type of input

shaper results in a series of alternating sign, variable-width pulses.

The other constraint equations are the motion constraints of the satellite as an

undeformed body. The satellite must maneuver to the desired attitude angle with

zero ®nal velocity. These values governed by equations (14) and (13) of the

previous section set the attitude maneuvers of rigid body motion. Since the main

purpose of input shaping is to limit the amount of residual vibration that occurs

when the system reaches its desired setting point, the constraint equation limiting
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Figure 5. An example of input shaping to generate a series of alternating-sign pulses.
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vibration amplitude must be de®ned. The constraint can be formulated as a ratio
of residual vibration amplitude under a shaped input divided by residual
vibration under an unshaped input. By expressing the constraint equation as a
ratio, the value of residual vibration can be speci®ed as a percentage of the
vibration under unshaped command. A bang-bang command can be selected as
the baseline unshaped command for rest-to-rest attitude maneuvers of the system
with on±off actuators. As a note, the vibration under the bang-bang command
will be zero when the width of the pulses is equal to a period of system
vibration. If such a case occurs, the ratio can be formed relative to a step input.
A bang-bang command can be observed as a step input convolved with a

shaper of the form

Ak

tk

� �
� 1 ÿ2 1

0 t2 t3

� �
, �19�

where, in this expression, t2 the switching time and t3 is the length of the bang-
bang. The bang-bang command is a time-optimal input for rest-to-rest
maneuvers with three impulses.
When an undamped second-order system is subjected to a sequence of

impulses, the amplitude of residual vibration can be formulated as a summation
of the responses to individual impulses that is given in the reference [15]. The
residual vibration amplitudes of the multimode ¯exible system such as the
satellite studied here can be written in the following form:

R�om� �

�����������������������������������������������������������������������������������Xn
i�1

Ai sin�omti�
" #2

�
Xn
i�1

Ai cos�omti�
" #2vuut , m � 1, 2, . . . , �20�

where om is an undamped natural frequency. The ratio of shaped to unshaped
vibration can be de®ned by dividing equation (20) for the shaped command by
its equivalent equation for the unshaped command. The percentage vibration
relative to a bang-bang is

V�om� �

��������������������������������������������������������������������������������������Xn
i�1

Ai sin�omti�
" #2

�
Xn
i�1

Ai cos�omti�
" #2

X3
k�1

Ak sin�omtk�
" #2

�
X3
k�1

Ak cos�omtk�
" #2

vuuuuuuuut , �21�

where Ak and tk describe the input shaper expressing the bang-bang command
given by equation (19).
Then, equation (21) is used as the constraint equation to limit the residual

vibration to an expected level of V at the system's frequency om . The
determination of V depends on the vibration amplitude as a result of the bang-
bang and the expected residual vibration amplitude under the shaped command.
If the vibration of the bang-bang is too large, while the expected vibration level
is small enough, then V must be set to a very small value. The known zero
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vibration (ZV) and zero vibration and derivative (ZVD) shapers use the criteria
of V=0.

5. REST-TO-REST ATTITUDE MANEUVER UNDER TIME-OPTIMAL/
FUEL-EFFICIENT SHAPED INPUTS

Singhose et al. [14] demonstrated that, for a simple system model consisting of
two masses (m1 and m2), and a spring (k) with parameter values
m1=m2= k=1, fuel-ef®cient shaped command pro®les spend smaller amounts
of fuel compared with time-optimal pro®les, while time lengths needed for
maneuvers are relatively the same. Hence, is very useful to use the fuel-ef®cient
shaped commands to control such a model, where the number of ¯exible modes
is low and there is no limitation in the ¯exible mode de¯ection. However, for the
complex system such as the satellite studied in this paper, the result has not been
known yet. On the one hand, the satellite has a lot of ¯exible modes, while it
must have high accuracies in pointing after the attitude maneuvers. On the other
hand, since it is known that large structural de¯ections induce large internal
loads, the de¯ections of ¯exible modes of the satellite must be kept small. In the
system having a lot of ¯exible modes such as the ®nite element model of the
satellite studied here, when the vibration at a natural frequency with the largest
residual vibration is suppressed, for example to zero, other frequencies can
amplify the resulting residual vibration. Thus, the ®nal vibration that occurs is
still relatively large and may still surpass the expected level of vibration in
relation to its mission. In such a case, the vibration at several natural frequencies
needs to be reduced until the resulting vibration remains below the acceptable
level. In this section, the attitude maneuvers of the satellite under time-optimal
and fuel-ef®cient shaped torque inputs will be simulated numerically.
The desired maneuver of the satellite observed in this study is 5� roll angle

displacement, and the residual oscillations are determined to be not greater than
0�07� in roll and pitch angles, and not greater than 0�2� in yaw angle. These
values of residual angle oscillations are the same as the permissible maximum
antenna beam pointing errors of the satellite required by the KOREASAT [8].
When bang-bang torque inputs are used for the maneuver, as described in
section 3, the very strong residual roll and yaw oscillations happen at o=0�3593
rad/s (see Figure 3), and these residual oscillations are caused by the roll input.
The short time yaw bang-bang input use has small enough contribution to the
residual attitude oscillation (see Figure 4). In view of the above, in order to
satisfy the satellite mission, an input shaper is applied to the roll torque only,
while the bang-bang yaw input is still applied. The inputs are applied to the
satellite separately. The shaped roll input is applied ®rst, and after that, the
bang-bang yaw input is given. Remembering that the permissible maximum
amplitude of roll oscillation is 0�07�, while the oscillation caused by the
application of the bang-bang yaw input is about 0�04�, the resulting residual
oscillation by the shaped roll input must be smaller than 0�03� (or 0�4% of the
result of bang-bang roll input). In order to achieve this value, the input shaper
with the same constant-amplitude roll torque input of 20N-m is developed in
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this study by setting V, equation (21), to zero at o=0�3593 rad/s. Besides this

natural frequency, V at one of the other higher frequencies of the satellite (i.e.,

0�9563 or 1�1166 rad/s) will be set to a small value. In this study, the number of

impulses of input shapers is selected to be 8, so that the optimal-time input

shaper is in the following con®guration:

Ai

ti

� �
� 1 ÿ2 2 ÿ2 2 ÿ2 2 ÿ1

0 t2 t3 t4 t5 t6 t7 t8

� �
, �22�

while the fuel-ef®cient input shaper is in the following form:

Ai

ti

� �
� 1 ÿ1 1 ÿ1 ÿ1 1 ÿ1 1

0 t2 t3 t4 t5 t6 t7 t8

� �
: �23�

The value of t1 has been selected to be zero in equations (22) and (23). The time-

optimal inputs always consume the fuel during the maneuver duration, while in

the fuel-ef®cient inputs there are periods where the fuel is not needed. In the fuel-

ef®cient commands generated by equation (23), the fuelling periods happen at

t1±t2 , t3±t4 , t5±t6 , and t7 ±t8 ; and the non-fuelling period at t2±t3 , t4±t5 , and t6±t7 .

When a time duration of command is determined to be shorter than 30 s, four

con®gurations of shaped inputs can be chosen, as listed in Table 3. In this table,

the last two columns express percentages of vibration at two higher natural

frequencies of the system, 0�9563 and 1�1166 rad/s. Besides constraints of the

satellite rigid body motion, t8< 30, and V(0�3593)=0, shaped commands listed

in Table 3 were obtained by using the following addition constraints: (i)

V(0�9563)< 0�2, 1<V(1�1166)< 1�5, minimize V(0�9563), and minimize t8 ; or (ii)

V(1�1166)< 0�2, 1<V(0�9563)< 1�5, minimize V(1�1166), and minimize t8. These

selections are directed to locate at which natural frequencies besides 0�3593 rad/s

will the vibration amplitude of the satellite be large. The ®rst case of time-

optimal command and the second case of fuel-ef®cient command have

V(1�1166)< 0�2; while the second case of time-optimal command and the ®rst

case of fuel-ef®cient command have V(0�9563)< 0�2.

TABLE 3

Time location of impulses for shaping the roll torque inputs

Case t1 t2 t3 t4 t5 t6 t7 t8 V(0�9563) V(1�1166)
number (s) (s) (s) (s) (s) (s) (s) (s) (%) (%)

Time-
optimal 1 0 5�94 9�63 13�89 19�63 20�99 23�32 23�52 144 10�4

Time-
optimal 2 0 4�89 8�01 12�93 18�56 20�98 24�58 24�70 18�5 148

Fuel-
efficient 1 0 2�49 9�83 12�70 15�07 18�10 25�31 27�64 16�9 117�5

Fuel-
efficient 2 0 2�18 8�43 10�63 17�47 19�65 25�90 28�10 128�0 12�8
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5.1. RESIDUAL ROLL OSCILLATION

The roll angle motions of the main rigid body of the satellite for all cases are
plotted in Figure 6. We can see in Figure 6(a) that the rest of the roll angle has
been changed successfully to the desired new value of 5� after attitude
maneuvers. The residual roll angle oscillation after maneuver resulting from the
®rst case of time-optimal, where V(0�9563)=144% and V(1�1166)=10�4%, has
a total amplitude of about 0�061�, or about 0�9% of the result of bang-bang
input. This value satis®es the precision requirement of the satellite pointing. The
second case of time-optimal with V(0�9563)=18.5% and V(1�1166)=148%
gives the resultant amplitude of residual roll angle oscillation of about 0�57�, or
8�5% of the result of bang-bang input. This value is greater than the permissible
maximum roll error of the satellite pointing. For the ®rst case of fuel-ef®cient,
where V(0�9563)=16.9% and V(1�1166)=117�5%, the resulting residual roll
oscillation is large enough. Its resultant amplitude is about 0.45�, and the
oscillation occurs largely at the period of 5�63 s (or o=1�1166 rad/s). This
means that the input reduces the residual roll angle oscillation at about 6�7%
compared with the result of the bang-bang input, but it is still greater, about 6�4
times, than its permissible maximum error. The second case of fuel-ef®cient with
V(0�9563)=128% and V(1�1166)=�12.8% gives favorable residual roll angle
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Figure 6. Time responses of roll angle displacement of the main body: (a) during maneuver; (b)
residual oscillation. Ð, Time-optimal 1; - - -, time-optimal 2; - � - �, fuel ef®cient 1; Ð, fuel-ef®cient 2.
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oscillation. The resultant amplitude is about 0�041� (i.e., about 0�6% of the
result of bang-bang input), which is smaller than the permissible maximum
pointing error in roll.
Taking into account the percentages of vibration at o=0�9563 and 1�1166

rad/s calculated in each case in connection with their resultant residual roll
oscillations, the model of the satellite observed in this study has a tendency to
give a larger response amplitude at 1�1166 rad/s compared with the 0�9563 rad/s
one. Besides its 0�3593 rad/s natural frequency, one must set the percentage
vibration at 1�1166 rad/s to a small value in selecting shaped inputs in order to
achieve residual roll oscillation in the expected level.

5.2. RESIDUAL PITCH AND YAW OSCILLATIONS

For all cases of switching time listed in Table 3, the pitch angles are
undisturbed during and after the maneuvers, as shown in Figure 7. The rests of
yaw angles after the maneuvers are still zero. The ®rst case of time-optimal gives
the largest maximum yaw angle displacement during the attitude maneuver, at
about 1�75�. The large residual yaw oscillations occur in the second case of time-
optimal and the ®rst case of fuel-ef®cient, as seen in Figure 7(a). Their total
amplitudes of residual yaw oscillations are about 0�35� and 0�28�, which are
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Figure 7. Time responses of pitch and yaw angle displacements of the main body: (a) during
maneuver; (b) residual oscillation. Ð, Yaw, time-optimal 1; - - -, yaw, time-optimal 2; - � -, yaw,
fuel-ef®cient 1; Ð, yaw, fuel ef®cient 2; � � � � �, pitch.
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greater than the permissible maximum pointing error in yaw. The total
amplitudes of the ®rst case of time-optimal and second case of fuel-ef®cient are
smaller than 0�04�, as seen in Figure 7(b), and these values are smaller than the
permissible maximum pointing error in yaw described previously. The total
amplitude of residual yaw oscillation in the second case of fuel-ef®cient is the
smallest one. The yaw motions are the coupling motions of their roll ones. These
phenomena can be seen in the responses of all cases, comparing Figures 6(b) and
7(b), in which both the response shapes and same periods of oscillation appear
sharply.

5.3. MAXIMUM DEFLECTIONS OF SOLAR PANELS

Since the solar panels of the satellite are supposed to have only out-of-plane
elastic deformations, the de¯ections of their nodes are symmetric with respect to
Yb and antisymmetric with respect to Xb. This means that the de¯ection of node
25 at each observation is the same as node 27, and the de¯ections of nodes 52
and 54 have the same magnitude but in the opposite direction. The maximum
de¯ections of solar panels happen at their tips, i.e., nodes 25, 27, 52, and 54, and
as a representation, in this paper, time responses of node 25 are given in Figure
8. The ®rst case of time-optimal input where the sequence impulsing time
intervals of the input shaper in the range of 0�20 to 5�94 s gives the largest
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Figure 8. Time responses of local vertical displacement of node 25 of the solar panel. (a) during
maneuver; (b) residual vibration. Key as for Figure 6.
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maximum de¯ection of node 25, as seen in Figure 8(a), about 115�7 cm
downward at t=6.75 s. Compared with the length of the solar panel, this
de¯ection is large enough, at about 9�64%. The second case of time-optimal
input with the sequence impulsing time intervals from 0�12 to 5�63 s gives the
maximum de¯ection of this node at about 95�9 cm downward at t=5�98 s. The
®rst case of fuel-ef®cient input, where the fuelling time segment lengths of the
input shaper are in the range of 2�33 to 3�03 s, gives the largest maximum
de¯ection of node 25 as seen in Figure 8(a), about 59�5 cm downward at
t=5�56 s. Compared with the length of the solar panel, this de¯ection is only
about 4�96%. The second case of fuel ef®cient input with the fuelling segment
lengths from 2�18 to 2�20 s gives the 52�8 cm maximum de¯ection upward of this
node at t=22�61 s. Since it is known that the time-optimal inputs always use
the fuel, it can be seen that in both kinds of shaped inputs being applied the
larger the value of the longest fuelling time segment length, the larger the
maximum de¯ection on the solar panel will be. The total amplitudes of residual
vibration of node 25 for all cases are smaller than 4�2 cm, as shown in Figure
8(b).

5.4. MAXIMUM RESIDUAL VIBRATION OF SOLAR PANELS

The use of shaped inputs has reduced successfully the residual vibrations of
¯exible modes. The maximum residual vibrations of solar panels for the ®rst case
of time-optimal happen at nodes 19, 21, 46, and 49; the second case of time-
optimal and ®rst case of fuel-ef®cient happen at nodes 16, 18, 43, and 45; while
for the second case of fuel-ef®cient, they happen at their tips, i.e., nodes 25, 27,
52, and 54. In the time-optimal maneuvers, the total amplitude of the largest
residual vibration of panels of the ®rst case is 1�6 cm (about 0�14% of the solar
panel's length), and the second one is 17�6 cm (1�47% of the solar panel's
length), as shown in Figure 9. In the fuel-ef®cient maneuvers, the amplitude of
the ®rst case is 14�3 cm (or 1�19% of the solar panel's length), and the second
one is 1�4 cm (0�12% of the solar panel's length). As in the resulting residual roll
and yaw oscillations, the second case of fuel-ef®cient also gives the smallest value
in the resulting maximum residual vibration of solar panels.

5.5. AMOUNT OF FUEL BEING CONSUMED

The maneuvers under the time-optimal inputs always consume the fuel during
the applications of inputs. If the fuel needed in the fuelling period is 1 unit of
mass per second, the ®rst case where its maneuver satis®es the requirement of
the satellite in pointing accuracies consumes 23�52 mass units of fuel, while the
second case consumes 24�70 mass units. In the fuel ef®cient maneuvers, the fuel
is only consumed in the fuelling periods. The ®rst case of this maneuver
consumes 10�72 mass units, while the second case which satis®es the requirement
of pointing accuracies after maneuver needs 8�72 mass units of fuel. This means
that the second case of fuel-ef®cient inputs consumes only 37�1% of fuel needed
in the ®rst case of time-optimal inputs, while the maneuver duration is 19�5%
longer.
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6. CONCLUDING REMARKS

Attitude maneuvers of the ¯exible satellite induce the vibration of ¯exible
members as well as satellite libration motion. However, for the satellite in
symmetrical conditions with respect to the Yb-axis of the rigid main body ®xed
frameÐi.e., Ixy and Iyz equal to zeroÐunder the roll and yaw torque inputs,
pitch motions are not induced. Without shaping the input, the ¯exible satellite
has poor attitude accuracy after slew maneuver. Under the combination of bang-
bang roll and yaw torque input, for 5� desired roll angle displacement only, the
satellite studied in this paper has residual roll angle oscillation with amplitudes
greater than the changing of the desired new rest angle. Shaped inputs show
their capability to reduce residual oscillation and vibration. For the shaped
inputs with eight impulses compared here, the maximum total amplitudes of
residual roll oscillation become smaller than 0�57�, the largest total amplitudes of
residual vibration of 12 m of solar panel are not greater than 17�6 cm, and the
total amplitudes of tip solar panel's residual vibration are not greater than
4�2 cm.
The selection of shaped input with V=0 at o of the strongest residual

vibration and relatively small V at other strong ones can give the attitude
maneuver with residual oscillations of attitude angles at the expected levels.
The maximum de¯ections of ¯exible members during maneuvers depend on

the length of time segment of fuelling. If this segment is long, the maximum
de¯ection will be long too. To maneuver ¯exible spacecraft in small maximum
de¯ection, the input shaper consisting of short time segments of fuelling is
needed.
For the same number of impulsing times in a limited maneuver time duration,

the use of fuel-ef®cient commands will give smaller maximum de¯ections of
¯exible members and consumes a smaller amount of fuel compared with the
time-optimal commands. Thus, the use of fuel-ef®cient commands is
recommended for maneuvers under constant-amplitude shaped inputs.
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